Top |
|
|
On
a shaft supported by two radial bearings, the distances between the
bearing seats on the shaft and in the housing frequently do not coincide
as a result of manufacturing tolerances. The distances may also
change as a result of temperature increases during operation. These
differences in distance are compensated in the non-locating bearing. Examples of locating/non-locating
bearing arrangements: see |
|
|
Ideal
non-locating bearings are cylindrical roller bearings with |
|
All
other bearing types, for example deep groove ball bearings and spherical roller
bearings, can only act as non-locating bearings if one bearing ring has
a fit that allows displacement, |
Top |
|
A
double row angular contact ball bearing, |
|
Angular
contact ball bearings of the universal design, |
|
Spindle
bearings of the |
|
In
gearboxes, a four point contact bearing is sometimes fitted directly
adjacent to a cylindrical roller bearing to give a locating bearing
arrangement, |
|
If
a lower axial force is present, a cylindrical roller bearing with |
Top |
|
|
Fitting
is also made easier with a matched pair of tapered roller bearings
as a locating bearing |
Top |
|
|
|
Deep groove ball bearing Locating
bearing Cylindrical roller bearing NU Non-locating
bearingAxial angular contact ball bearing ZKLN Locating
bearingNeedle roller bearing NKIS Non-locating
bearingFigure 1 |
Deep groove ball bearings Locating
bearing Non-locating
bearingSpherical roller bearings Locating
bearing Non-locating
bearingFigure 2 |
Double row angular contact
ball bearing Locating
bearing Cylindrical roller bearing NU Non-locating
bearingFour point contact bearing and cylindrical roller bearing Locating
bearing Cylindrical roller bearing NU Non-locating
bearingFigure 3 |
Two tapered roller bearings Locating
bearing Cylindrical roller bearing NU Non-locating
bearingCylindrical roller bearing NUP Locating
bearingCylindrical roller bearing NU Non-locating
bearingFigure 4 |
Pair of angular contact
ball bearings of
universal design O arrangement X arrangementFigure 5 |
Spindle bearings of
universal design O arrangement X arrangement Tandem O
arrangementFigure 6 |
Pair of tapered roller
bearings O arrangement X arrangementFigure 7 |
Top |
|
|
These
bearing arrangements normally consist of two symmetrically arranged
angular contact ball bearings or tapered roller bearings, |
Top |
|
|
A
fundamental distinction is drawn between the O arrangement, |
Angular contact ball
bearings O arrangement X arrangementS = apexes of the contact cones H = support distance Figure 8 |
Top |
|
|
When
setting the axial internal clearance, thermal expansion must be taken
into consideration. In the X arrangement, |
| Tapered roller bearings
in X arrangement S = apexes of the contact cones R = roller cone apexes Figure 9 |
|
In the O arrangement, a distinction is drawn between three cases: |
|
Tapered roller bearings
in O arrangement Intersection
points coincide Intersection
points overlapS = apexes of the contact cones R = roller cone apexes Figure 10 |
| Tapered roller bearings
in O arrangement, without overlapping of roller cone apexes S = apexes of the contact cones R = roller cone apexes Figure 11 |
Top |
|
|
Adjusted
bearing arrangements can also be achieved by preloading using springs, |
Deep groove ball bearing
preloaded by curved spring washer Curved spring
washerFigure 12 |
Top |
|
|
The
floating bearing arrangement is an economical solution where close axial
guidance of the shaft is not required, |
|
|
Suitable bearing types for the floating bearing arrangement include deep groove ball bearings, self-aligning ball bearings and spherical roller bearings. |
|
In each of the bearings one ring, usually an outer ring, has a fit that allows displacement. |
|
In
floating bearing arrangements and cylindrical roller bearings with |
|
Tapered roller bearings and angular contact ball bearings are not suitable for a floating bearing arrangement, since they must be adjusted in order to run correctly. |
Two deep
groove ball bearings Two spherical
roller bearings Two cylindrical
roller bearings NJs = axial clearance Figure 13 |
Top |
|
|
The following must be taken into consideration in the selection of fits: |
|
![]() |
With tight fits and a temperature differential between the inner and outer ring, the radial internal clearance of the bearing is reduced. This must be taken into consideration when selecting the internal clearance. |
|
If materials other than cast iron or steel are used for the adjacent construction, the modulus of elasticity and the differing coefficients of thermal expansion of the materials must also be be taken into consideration to achieve rigid seating. |
|
For aluminium housings, thin-walled housings and hollow shafts, a closer fit should be selected if necessary in order to achieve the same force locking as with cast iron, steel or solid shafts. |
|
Higher loads, especially shocks, require a fit with larger interference and narrower geometrical tolerances. |
|
Where axial bearings also support radial forces, such as in axial spherical roller bearings, fits should be selected in the same way as for radial bearings. |
Top |
|
|
The
conditions of rotation indicate the motion of one bearing ring with
respect to the load direction and are expressed as either circumferential
load or point load as shown
in the |
|
|
If the ring remains stationary relative to the load direction, there are no forces that displace the ring relative to its seating surface. This type of load is described as point load. |
|
There is no risk that the seating surface will be damaged and a loose fit is possible. |
Top |
![]() |
As damage to the bearing seating surface can occur, a tight fit should be used. |
Top |
|
|
The
fit is determined by the |
|
|
The |
Top |
|
|
The tables on pages |
|
Deviations
are possible if particular requirements apply, for example in
relation to running accuracy, smooth running or operating temperature.
Increased running accuracies thus require closer tolerances
such as tolerance grade |
|
In such cases, the question of fits can only be resolved by a compromise. The individual requirements must be weighed against each other and those fulfilled that give the best overall solution. |
Zero line Nominal diameter Loose fit Transition
fit Tight fit Shaft diameter Housing boreΔDmp = tolerance for bearing outside diameter Δdmp = tolerance for bearing bore Figure 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Top |
|
|
The
numerical values for the fits ( |
|
|
In
each cell are five numbers in accordance with the following scheme, for
example for shaft ⌀ |
|
|
|
|||||||||||||||||
|
|
|
|
Shaft
fits: see tables from |
Top |
|
|
In
each cell are five numbers in accordance with the following scheme, for
example for a housing ⌀ |
|
|
|
|||||||||||||||||
|
|
|
Top |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| The values printed in italic indicate guide values for the |
Top |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Top |
|
|
For
bearings without an inner ring, the |
Needle roller Outer racewayFw = enveloping circle diameter Figure 15 |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Top |
|
|
In
order to achieve the required fit, the bearing seats and fit surfaces of
the shaft and housing bore must conform to certain tolerances, |
| t1 = roundness t2 = parallelism t3 = axial runout of abutment shoulders Figure 16 |
|
|
The
degree of accuracy for the bearing seat tolerances on the shaft and
in the housing is given in the tables, |
|
|
The
tolerances for a second bearing seat on the shaft (d2)
or in the
housing (D2) (expressed in terms of coaxiality to |
Top |
|
|
In split housings, the joints must be free from burrs. |
|
The accuracy of the bearing seats is determined as a function of the accuracy of the bearing selected. |
|
|
|
| ISO fundamental tolerances
(IT grades) to |
Top |
|
|
The
roughness of the bearing seats must be matched to the tolerance class
of the bearings. The |
|
The
bore and shaft tolerances and permissible roughness values are also given
in the design and safety guidelines in the product sections.
The guide values for roughness correspond to |
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
|
Top |
|
|
The
table shows numerical values for the ISO fundamental tolerances (IT grades) to |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Top |
|
|
In rolling bearings which do not have an inner and/or outer ring to provide a raceway, the rolling elements run directly on the shaft or in the housing bore. |
![]() |
The shaft and housing bore must be suitable for use as rolling bearing raceways. |
|
The
raceways must always be free from undulations and precision machined
(grinding and honing). At a mean roughness |
|
The guidelines on shaft design in the product sections must also be observed. |
|
The diameter tolerances of the shaft and housing determine the internal clearance. |
Top |
|
|
Through
hardening steels to |
Top |
|
|
Case
hardening steels must conform to |
Top |
|
|
For
flame and induction hardening, steels to |
Top |
|
|
The
values apply to raceways, washers and shaft shoulders. Case, flame or
induction hardened steels must have a surface hardness
of |
|
The
hardening depth is, according to |
![]() |
If
the raceways are softer than |
| fH = factor
for taking account of
raceway hardness HRC, HV = surface hardness Figure 17 |
Top |
|
|
The
hardness curves are shown schematically, see |
|
The formulae are based on hardness curves achieved with normal specialist heat treatment. |
|
Case hardening: |
|
|
|
Flame or induction hardening: |
|
|
|
|||||||||||||||||||||||||||
Case hardening Required
hardness Hardness Distance
from surfaceCHD = case hardening depth with hardness Figure 18 |
Flame or
induction hardening Required
hardness Hardness Distance
from surfaceSHD = surface hardening depth Figure 19 |
Top |
|
|
Axial location of the bearing rings is matched to the specific bearing arrangement (locating bearing, non-locating bearing, adjusted and floating arrangements of bearings). |
![]() |
The bearing rings must be located by force locking or geometrical locking in order to prevent lateral movement. The bearing rings must only be in contact with the shaft or housing shoulder, but not with the fillet. |
|
Every
radius of the mating part must be smaller than the smallest |
|
The
radius should have rounding to |
|
The
shoulders on the mating parts must be large enough to provide a
sufficiently wide contact surface even with the largest chamfer dimension
of the bearing |
|
The bearing tables give the maximum values for the radius ra or ra1 and the diameter of the abutment shoulders (Da or da). |
|
Any special characteristics of the individual bearing types, e.g. for needle roller bearings, cylindrical roller bearings, tapered roller bearings and axial bearings, are indicated in the product sections. |
|
|
Locating bearings can support axial forces. The retaining element must be matched to these axial forces. Shoulders on the shaft and housing, snap rings, housing cover, shaft covers, nuts and spacer rings are suitable. |
Top |
|
|
Non-locating bearings only need to support slight axial forces occurring in thermal expansion. The means of axial location only needs to prevent creep of the rings. A tight fit is often sufficient. |
Top |
|
|
In non-separable bearings, one bearing ring requires a tight fit, the other ring is retained by the rolling elements. |
Top |
| Support on both sides, inner and outer sides Figure 20 |
| Support on both sides, inner side Figure 21 |
Top |
|
|
The
bearing rings must be supported on both the inner and outer sides, |
|
The ribs of axially loaded cylindrical roller bearings must be supported up to dimension d1 and D1. Dimensions d1, D1: see dimension tables. |
|
For semi-locating bearings, the bearing rib only requires support on one side, on the rib supporting the axial load. |
Outer ring axially located
by retaining rings Retaining
ringsFigure 22 |
Axial location by geometrical
locking Locating
bearing Non-locating
bearingFigure 23 |
| The inner ring rib prevents axial creep to
one side Figure 24 |
Top |
![]() |
The
axial running surfaces should be precision machined (Ra |
|
A
washer should be fitted to provide a smooth running surface for retaining rings
and snap rings, |
|
Sufficient interference must be ensured between the snap ring and washer. |
Axial location
by snap ring and washer Axial location
by adjacent constructionFigure 25 |
Top |
|
|
Location
is achieved by a snap ring and abutment shoulder, |
| Drawn cup needle roller
bearing Axial location by snap ring and shaft shoulder Figure 26 |
Needle roller bearing Axial location
by snap rings Axial location
by abutment shoulderFigure 27 |
Top |
![]() |
Axial
support of bearing rings on both sides is particularly important for
locating bearings and bearings with split inner ring or split
outer ring, |
| Needle roller/angular
contact ball bearing Axial support of bearing rings on both sides Figure 28 |
Top |
|
|
Since
bearings in adjusted and floating arrangements support axial forces
in one direction only, the bearing rings only need to be supported
on one side. Counterguidance is performed by a second, symmetrically
arranged bearing, |
|
In
floating bearing arrangements, lateral movement of the
rings is
prevented by shaft or housing shoulders, covers, snap rings, |
| Axial location Figure 29 |
| Axial location a = guidance clearance; a < b (b = axial labyrinth gap) Figure 30 |
Top |
|
|
The sealing arrangement has a considerable influence on the operating life of a bearing arrangement. It is intended to retain the lubricant in the bearing and prevent the ingress of contaminants into the bearing. |
|
Contaminants may have various effects: |
|
|
A basic distinction is made between contact and non-contact seals in the adjacent construction and in the bearing. |
|
|
With non-contact seals, only lubricant friction occurs in the lubricant gap. The seals do not undergo wear and remain capable of operation for a long period. Since they generate no heat, non-contact seals are also suitable for very high speeds. |
|
|
A
simple design, although adequate in many cases, is a narrow seal gap
between the shaft and housing, |
|
Figure 31 |
Top |
|
|
A
considerably greater sealing effect than with gap seals is achieved by
labyrinths incorporating gaps filled with grease, |
|
In contaminated environments, grease should be pressed from the interior into the seal gap at short intervals. |
|
Figure 32 |
Top |
|
|
Where
oil lubrication is used with a horizontal shaft, splash rings are suitable
for preventing the escape of oil, |
|
The oil outlet hole on the underside of the seal location must be sufficiently large that it cannot be clogged by contamination. |
|
Figure 33 |
Top |
|
|
Co-rotating
flinger shields have the effect of shielding the seal gap from heavy
contamination, |
|
Figure 34 |
Top |
|
|
Stationary
(rigid) baffle plates ensure that grease remains in the area around
the bearing, |
|
The grease collar that forms at the seal gap protects the bearing against contamination. |
|
Figure 35 |
Top |
|
|
Lamellar
rings made from steel and radially sprung either outwards or inwards
require little mounting space, |
|
Figure 36 |
Top |
Top |
|
|
Sealing
shields are compact sealing elements fitted on one or both sides
of the bearing, |
|
Bearings with sealing shields on both sides are supplied with a grease filling. |
|
Figure 37 |
Top |
|
|
The friction in this case is as low as that in bearings with sealing shields. They have the advantage over these, however, that the outer elastic rim gives good sealing when fitted in the slot in the outer ring. This is important with a rotating outer ring since the base oil is separated from the soap suspension by centrifugal force and would escape through the unsealed metallic seat in the outer ring if sealing shields were fitted. |
|
Bearings
with |
|
Figure 38 |
Top |
|
|
Contact seals are normally in contact with the running surface under radial contact force. The contact force should be kept small to avoid an excessive increase in frictional torque and temperature. The frictional torque and temperature as well as the wear of the seal are also affected by the lubrication condition at the running surface, its roughness and the sliding speed. |
|
|
Felt
rings and felt strips are sealing elements that have proved very effective
with grease lubrication, |
|
Figure 39 |
Top |
|
|
If
oil lubrication is used, sealing is primarily carried out with rotary shaft
seals to |
|
If
the principal objective is to prevent escape of lubricant,
the lip is
arranged on the inner side of the bearing arrangement.
A sealing ring with an additional protective lip also prevents
the ingress of contamination. Seal lips made from nitrile
butadiene rubber |
|
Figure 40 |
Top |
|
|
These
compact sealing rings are matched to INA needle roller bearings
and are suitable for circumferential speeds at the running surface
of up to |
INA sealing
ring G INA sealing
ring SDFigure 41 |
Top |
|
|
The
V ring is a lip seal with axial sealing action, |
|
Axial lip seals are unaffected by radial misalignment and slight skewing of the shaft. |
|
Rotating
V rings are suitable with grease lubrication for circumferential
speeds up to |
|
V rings are frequently used as outer seals in order to keep contamination away from a rotary shaft seal. |
|
Figure 42 |
Top |
|
|
When
using grease lubrication, effective sealing can also be achieved
by means of axial spring seals, |
|
Figure 43 |
Top |
Top |
|
|
Bearings
fitted with one or two sealing washers allow simple designs, |
|
Sealing washers are used, for example, in maintenance-free bearings with grease filling. |
|
The
sealing washer design |
| Sealing washers 2RSR Figure 44 |
Top |


Top
Locating
bearing
Non-locating
bearing
Locating
bearing
Non-locating
bearing













Tight fit
Shaft diameter
Housing bore

































